

- ¹ Dep rt ent of Co puter Science Durh niversity Durh DH LE nited ingdo
- ² Bio the tics Rese rch Centre Dep rt ent of M the tics nd St tis tigs niversity of C nter uny Christchurch Ne. Ze nd.
- ³ Dep rt ent of Bioinfor tigs Heinrich Heine niversity Dusse dorf Ger ny.
- ⁴ Dep rt ent of M the tics nd Co puter Science Leh n Co ege City niversity of Ne Yor SA

Correspondence: Si one Ling Bio the tics Rese rch Centre De p rt ent of M the tics nd St tistigs niversity of C nter uny Pri v te B g Christchurch Ne Ze nd Te E i inz cs uni duesse dorf de

Running head: A Reduction A gorith for Hyperidiz tion

Key words: hy ridiz tion net for s reticu te evo ution gree ent forest

1 Abstract

Hy ridiz tion is n i port nt evolution ry process for ny groups of species. Thus con7icting sign s in d t set $y \text{ not}_{\mathfrak{p}}$ e the result of s ping or ode ing errors \mathfrak{p} ut due to the f ct th t hy ridiz tion h s p yed signi c nt f ief u u du t

Inter the inities of the consists of the property of the pr

In this p per description of the reductions of the reduction of the reduc

Figure 1. To rooted, in ry phy ogenetic trees \mathcal{I}_{nd} and to hy ridiz tion net or s 1 nd 2. Thick e p in oth trees

co c in tion of the ed p r eter resu t descried in Borde. Tch nd Se pe c mose proof of correctness is given c y Proposition do the t p per nd the c uster reduction descried in B roni **et al**. So the proof of correctness is given c y Theore in the t p per do the second term of the term of term of the term of the term of t

3 Reduction Algorithm for Hybridization

et egin. The for description of the to tree prove A rooted binary phylogenetic X-tree is rooted tree that has a fast X and Those root has degree to the other interior vertices have degree three. A cluster of is subset of X that could inspecise y the elements that is descendents of so everte of

A **rooted acyclic digraph** is digr ph. The no directed cycles. E chouch digr ph h s distinguished verte ρ . There in degree is zero and h s the property that there is directed p theorem in degree is zero and h s the verte v in digr phase. The denote the **in-degree** of v the nut of er of edges directed into $v \in y d^- v$ and the **out-degree** of v the nut of er of edges directed out of $v \in y d^+ v$. A hybridization network on X is rooted cyclic digr phase the indegree of ρ in the nut of the verted out of v is rooted by the nut of the indegree of v the nut of the verted out of v is not the nut of the nut of

i X is the set of vertices of out degree zero

ii $d^+ \rho$ \blacktriangleright nd

such net Sr the s er the size of the resu ting gree ent forest for S nd Sr here the size of forest is the nu r er of trees in the forest. On the other h nd if Sr regiven n gree ent forest for Snd then one c n reverse this process to construct hyr ridiz tion net Sr th t e p ins Sr nd

Figure 2. The formula of the triangle formula f is the reduction rule. The triangle formula f is the triangle formula of the triangle formula f is the triangle formula of triangle formula of the triangle formula of tria

Further ore the correctness of the ch in reduction ru e fo and fro Proposition i of Bordenich nd Se pe

- ii Borde Tch nd Se pe , showed that the suppresent of the suppresent of the super section of the section of the super section of the secti
- iii ithout going into det is the custer reduction h s si i r 7 vor to the Deco position Theore in Huson et al. ____ This the ore descriptes one to one correspondence et een the over pping cyc es of n unrooted net. For \mathcal{N} the connected co ponents of the inco p the ity gr ph of the spits gener ted $_{\bullet}$ y \mathcal{N} nd the netted co ponents of the sp its gr ph of the sp its gener ted, y \mathcal{N} . However \mathcal{I} The this theore yields n gorith for initial is the nu ρ er of hy ridiz tion vertices ongst restricted c ss of net. For s it is i port nt to note th t it does not give gener str tegy for ini ongst hy ridiz tion net or s s there is no izing this nu \bullet er gu r ntee th t such reduction e ds to n opti so ution. In con tr st B roni et al. , showed th t such str tegy in p rticu r the custer reduction . For s for the trees. It is n interesting open

pairwise combination		# taxa	hybridization number	run time ^a
nd ·	yB	40	14	11 h
nd \cdot	ς cL	36	13	11.8 h
nd \cdot	~ oC	34	12	26.3 h
nd \cdot	å _{zy}	19	9	320 s
nd \cdot		46	at least 15	2 d
yB	∽ cL	21	4	1 s
yB	$\sim oC$	21	7	180 s
yB	d _{zy}	14	3	1 s
yB	, S	30	8	19 s
$\sim cL$	$\sim oC$	26	13	29.5 h
$\sim cL$	d_{zy}	12	7	230 s
$\sim cL$.5	29	at least 9	2 d
~ oC	a _{zy}	10	1	1 s
oC		31	at least 10	2 d
a _{zy}		15	8	620 s

Table 2. Results for the Poaceae d tset

 $^{\rm a} run$ time on a 2000 MHz CPU, 2 GB RAM machine measured in seconds (s), hours (h), and days (d), respectively

p st sequence phytochro e B **phyB** nd the nuc e r sequence of the inter n tr nscript d sp cer of rigoso DNA **ITS**. Inch h ve n over pping t set of present d y species see the rowindic ted g y the gr y g c

Figure 6.

su trees chins or custers . Thich is i e y for ny_{c} io ogic e p es the net gorith perfor s re r c y te nd the hy ridiz tion nu c er c n c e found in re son c e ti e

Note that **HybridNumber** c cu tes over cound for the nu c er of hydridization events to e p in the di erences cet cent. To phy ogenetic gene trees ssu ing that hydridization is the only cluse of incongruence c et een the to trees. It is possive that the result of hydridization events that h ppened during the evolution of the collection of present d y species under consider tion is underestile ted. Indeed it is possive that so e hydridization events renever recognized. Neverthe ess the gorith provides the report of the collection of the collection

- N h eh L Ruths D nd ng LS RIATA HGT f st nd ccu r te heuristic for reconstructing horizont gene tr nsfer. In **Proceedings** of the Eleventh International Computing and Combinatorics Conference (COCOON 05) Lecture Notes in Co puter Science of Springer p
- N h eh L rno Linder CR et Reconstructing reticu te evolution in species theory nd pr ctice Journal of Computational Biology 12
- O sen G M tsud H H gstro R et f stDNA L too for con struction of phy ogenetic trees of DNA sequences using i u i e i hood Comput Appl Biosci 10
- Sch idt HA Phy ogenetic trees fro rge d t sets PhD thesis Heinrich Heine niversit t Dusse dorf
- Se p e C nd Stee M Phylogenetics O ford niversity Press.

Appendix

A Pseudocode

Here \mathcal{F} present the pseudocode of HybridNumber For rooted \mathfrak{p} in ry phy ogenetic X tree A of X A of X A of X Asu tree connecting the e e ents in $A_{\bullet} y = A^{\perp}$ Further Je denote the tree of for edgy rep cing custer A. If the new eff $c_{0}y = A$, $c \in HB$ sup set of X - e use B to denote the phy ogenetic tree q t ined isfro \bullet y de eting e ch of the e e ents in B nd suppressing ny resu ting degree to verte \downarrow Fin χ , E denotes the forest q t ined from the • y de eting the edges in the set E_{-} Bec use of the ch in reduction tree rue the input to **HybridNumber** inc udes deght function w on p irs of t this c $n_{\mathbf{p}}$ e t en to e zero for p irs in the initi input Algorithm A.4: ClusterReduction \checkmark , w C ini co on custer of \checkmark nd $\searrow S$ 2 - C 2 - C $w_1 - w$ restricted to p irs of t in C $w_2 - w$ restricted to p irs of t not in C return \checkmark , w_1, \checkmark , w_2, w_2

Remarks

- The ctu i pe ented gorith s cont in v rious s i prove ents co p red to the pseudocode in order to i prove running ti ehi st these ch nges do not ect the theoretic - Forst c se running ti e in pr ctice they recene ci An e pe is th t no gree ent forest h s n iso ted intern verte, hence in the e h ustive se rch - Te do not need to consider su sets of edges of size i to de ete fro - Sinch cont in the three edges incident. The p rticu r verte
- In HybridNumber fo a mg c to the custer reduction the custer re oved c nnot c e reduced ny further using the reductions in Inch c se e i edi te y c ExhaustiveSearch Hadever it y note possi e to further reduce the re inder of the trees nd so e c HybridNumber.