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1 Abstract

Hybridization is an important evolutionary process for many groups of
species. Thus, conflicting signals in a data set may not be the result of
sampling or modeling errors, but due to the fact that hybridization has





when the initial collection consists of two rooted binary phylogenetic trees
(Bordewich and Semple, 2007a). Consequently, as a result of this computa-
tional difficulty, most current research considers the two-tree problem. There
are now several algorithms for approaching this latter problem. However,
all of these algorithms are either algorithms solving a restricted version of
the problem (e.g. Hallett and Lagergren, 2001; Huson et al., 2005; Nakhleh
et al., 2005b) or polynomial-time heuristics with no guarantee of the close-
ness of their solution (e.g. Nakhleh et al., 2005a).

In this paper, we describe a new, and recently implemented, exact al-
gorithm for solving the two-tree problem (with no restrictions) based on
three reductions that preserve the amount of hybridization. All of these
reductions make use of similarities between the two trees. It has recently
been shown that two of the reductions are enough to guarantee that the
algorithm is fixed-parameter tractable, where the parameter is the smallest
number of hybridizations to explain the initial two trees (Bordewich and
Semple, 2007b). This means that the algorithm runs efficiently when this
smallest number is bounded. The remaining reduction allows
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Figure 1. Two rooted binary phylogenetic trees S and T and two hy-
bridization networks H1 and H2 which explain both trees.

combination of the fixed-parameter result described in Bordewich and Sem-
ple (2007b) (whose proof of correctness is given by Proposition 3.2 of that
paper) and the cluster reduction described in Baroni et al. (2006) (whose
proof of correctness is given by Theorem 1 in that paper). For simplicity, in
this paper we only describe the main ideas. For the reader interested in the
finer details, we refer them to the original papers.

3 Reduction Algorithm for Hybridization

We begin with a formal description of the two-tree problem. A rooted binary
phylogenetic X-tree T is a rooted tree that has leaf set X and whose root has
degree two while all other interior vertices have degree three. A cluster of T
is a subset of X that contains precisely the elements that are descendants
of some vertex of T .

A rooted acyclic digraph is a digraph with no directed cycles. Each such
digraph has a distinguished vertex ρ whose in-degree is zero and has the
property that there is a directed path from ρ to every other vertex. For
a vertex v in a digraph, we will denote the in-degree of v (the number of
edges directed into v) by d−(v) and the out-degree of v (the number of edges
directed out of v) by d+(v). A hybridization network H on X is a rooted
acyclic digraph with root ρ in which

(i) X is the set of vertices of out-degree zero,

(ii) d+(ρ) ≥ 2, and
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such a network, the smaller the size of the resulting agreement forest for S
and T , where the size of a forest is the number of trees in the forest. On the
other hand, if we are given an agreement forest for S and T , then one can
reverse this process to construct a hybridization network H that explains S
and T
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Figure 2.





Furthermore, the correctness of the chain reduction rule follows from
Proposition 3.2 of Bordewich and Semple (2007b).

(ii) Bordewich and Semple (2007b) showed that the subtree and chain
reductions by themselves are enough to ‘kernelize’ the problem and
give a fixed-parameter algorithm for Hybridization Number. The
cluster reduction provides an extremely useful tool for breaking the
problem into a number of smaller problems—all that is required is
that the subtrees have identical leaf sets, the topologies of the two
subtrees can be completely different.

(iii) Without going into details, the cluster reduction has a similar flavor
to the “Decomposition Theorem” in Huson et al. (2005). This the-
orem describes a one-to-one correspondence between the overlapping
cycles of an (unrooted) network N , the connected components of the
incompatibility graph of the splits generated by N , and the netted
components of the splits graph of the splits generated by N . However,
while this theorem yields an algorithm for minimizing the number
of hybridization vertices amongst a restricted class of networks, it is
important to note that it does not give a general strategy for mini-
mizing this number amongst all hybridization networks as there is no
guarantee that such a reduction leads to an optimal solution. In con-
trast, Baroni et al. (2006) showed that such a strategy, in particular
the cluster reduction, works for two trees. It is an interesting open
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subtrees, chains, or clusters—which is likely for many biological examples,
the new algorithm performs remarkably well and the hybridization number
can be found in reasonable time.

Note that HybridNumber calculates a lower bound for the number
of hybridization events to explain the differences between two phylogenetic
gene trees (assuming that hybridization is the only cause of incongruence
between the two trees). It is possible that the real number of hybridization
events that happened during the evolution of the collection of present-day
species under consideration is underestimated. Indeed, it is possible that
some hybridization events are never recognized. Neverthel
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Appendix

A Pseudocode

Here we present the pseudocode of HybridNumber. For a rooted binary
phylogenetic X-tree T and a subset A of X, we denote the minimal subtree
of T connecting the elements in A by T (A). Further, we denote the tree
formed by replacing a cluster A with the new leaf c by T [A → c]. If B

is a subset of X, we use T [−B] to denote the phylogenetic tree obtained
from T by deleting each of the elements in B and suppressing any resulting
degree-two vertex. Finally, F(T , E) denotes the forest obtained from the
tree T by deleting the edges in the set E. Because of the chain reduction
rule, the input to HybridNumber includes a weight function w on pairs of
taxa; this can be taken to be zero for all pairs in the initial input.
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Algorithm A.1: HybridNumber(S,T , w)

(S,T , w)← SubtreeReduction(S,T , w)
(S,T , w)← ChainReduction(S,T , w)
if ∃ a minimal common cluster C of S and T and

1 < |C| < number of taxa of S

do



















(S1,T1, w1,S2,T2, w2)← ClusterReduction(S,T , w)
h1 ←
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Algorithm A.4: ClusterReduction(S,T , w)

C ← minimal common cluster of S and T
S1 ← S(C)
S2 ← S[C → c]
T1 ← T (C)
T2 ← T [C → c]
w1 ← w restricted to pairs of taxa in C

w2 ← w restricted to pairs of taxa not in C

return (S1,T1, w1,S2,T2, w2)
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Algorithm A.5: ExhaustiveSearch(S,T , w)

if S ∼= T return (0)
h← number of leaves of S
i← 0
repeat

for each E a subset of the edges of S such that |E| = i

do



































F ← F(S, E)
if F is an acyclic-agreement forest of S and T

do



















P ← {(a, b) : a, b are isolated taxa in F}
h′ ← i +

∑

(a,b)∈P w(a, b)

if h′ < h

do h← h′

i← i + 1
until i ≥ h

return (h)

Remarks

1. The actual implemented algorithms contain various small improve-
ments compared to the pseudocode in order to improve running time.
Whilst these changes do not affect the theoretical ‘worst case’ running
time, in practice they are beneficial. An example is that no agreement
forest has an isolated internal vertex, hence in the exhaustive search
we do not need to consider subsets of edges of size i (to delete from
S) which contain the three edges incident with a particular vertex.

2. In HybridNumber, following a call to the cluster reduction, the clus-
ter removed cannot be reduced any further using the reductions, in
which case we immediately call ExhaustiveSearch. However, it
may now be possible to further reduce the remainder of the trees and
so we call HybridNumber.
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